Xenogeneic Acellular Conjunctiva Matrix as a Scaffold of Tissue-Engineered Corneal Epithelium
نویسندگان
چکیده
Amniotic membrane-based tissue-engineered corneal epithelium has been widely used in the reconstruction of the ocular surface. However, it often degrades too early to ensure the success of the transplanted corneal epithelium when treating patients with severe ocular surface disorders. In the present study, we investigated the preparation of xenogeneic acellular conjunctiva matrix (aCM) and evaluated its efficacy and safety as a scaffold of tissue-engineered corneal epithelium. Native porcine conjunctiva was decellularized with 0.1% sodium dodecyl sulfate (SDS) for 12 h at 37°C and sterilized via γ-irradiation. Compared with native conjunctiva, more than 92% of the DNA was removed, and more than 90% of the extracellular matrix components (glycosaminoglycan and collagen) remained after the decellularization treatment. Compared with denuded amniotic membrane (dAM), the aCM possessed favorable optical transmittance, tensile strength, stability and biocompatibility as well as stronger resistance to degradation both in vitro and in vivo. The corneal epithelial cells seeded on aCM formed a multilayered epithelial structure and endured longer than did those on dAM. The aCM-based tissue-engineered corneal epithelium was more effective in the reconstruction of the ocular surface in rabbits with limbal stem cell deficiency. These findings support the application of xenogeneic acellular conjunctiva matrix as a scaffold for reconstructing the ocular surface.
منابع مشابه
Development of a rabbit corneal equivalent using an acellular corneal matrix of a porcine substrate
PURPOSE The tissue equivalent that mimics the structure and function of normal tissue is a major bioengineering challenge. Tissue engineered replacement of diseased or damaged tissue has become a reality for some types of tissue such as skin and cartilage. The tissue engineered corneal epithelium, stroma, and endothelium scaffold are promising concepts in overcoming the current limitations of a...
متن کاملConstruction of autologous human heart valves based on an acellular allograft matrix.
OBJECTIVE Tissue engineered heart valves based on polymeric or xenogeneic matrices have several disadvantages, such as instability of biodegradable polymeric scaffolds, unknown transfer of animal related infectious diseases, and xenogeneic rejection patterns. To overcome these limitations we developed tissue engineered heart valves based on human matrices reseeded with autologous cells. METHO...
متن کاملAcellular Swine Cornea Matrix Innoculated with Amniotic Epithelial Cells (Aecs) for Cornea Tissue Engineering
Introduction Acellular corneal matrix, with its fine biocompatibility and strength for suturing, are being developed to replace part or full thickness of diseased corneas[1]. The bioactivity of acellular corneal matrix can be modified to the purpose of permitting host tissue regeneration. AECs innoculation may produce a mimetic model of corneal epithelium, which could promote outgrowth of cells...
متن کاملDecellularized kidney in the presence of chondroitin sulfate as a natural 3D scaffold for stem cells
Objective(s): Use of biological scaffolds and automating the cells directing process with materials such as growth factors and glycosaminoglycans (GAGs) in a certain path may have beneficial effects in tissue engineering and regenerative medicine in future. In this research, chondroitin sulfate sodium was used for impregnation of the scaffolds. It is a critical component in extracellular matrix...
متن کاملKeratin 13 is a more specific marker of conjunctival epithelium than keratin 19
Introduction To evaluate the expression patterns of cytokeratin (K) 12, 13, and 19 in normal epithelium of the human ocular surface to determine whether K13 could be used as a marker for conjunctival epithelium. Methods: Total RNA was isolated from the human conjunctiva and central cornea. Those transcripts that had threefolds or higher expression levels in the conjunctiva than the cornea wer...
متن کامل